Refine Your Search

Topic

Author

Search Results

Technical Paper

The New Car Assessment Program:Five Star Rating System and Vehicle Safety Performance Characteristics

1995-02-01
950888
In the New Car Assessment Program (NCAP), beginning with the model year 1994 vehicles, the National Highway Traffic Safety Administration (NHTSA) developed and adopted a simplified nonnumeric format for presenting the comparative frontal crashworthiness safety information to consumers. This paper presents the basis for the development of this “star rating” system. The injury probability functions which are used for the star rating system are also applied to the results of the recent NCAP real-world correlation studies and a review of these studies is given. The safety performance for restrained occupants as measured in NCAP is dependent on several parameters which include: the design of the restraint system, the maintenance of the integrity of the occupant space, and the energy management performance of the front structure.
Technical Paper

Determination of the Significance of Roof Crush on Head and Neck Injury to Passenger Vehicle Occupants in Rollover Crashes

1995-02-01
950655
A comparative study between belted rollover occupants who did and did not receive head injuries from roof contact was conducted using the National Accident Sampling System (NASS) database. The main objective was to determine if headroom reduction increases the risk of head injury. Headroom was determined for 155 belted occupants involved in rollover crashes of vehicles which were then weighted to make them representative of national estimates. Results showed that headroom was reduced more in those crashes where the occupant had head injuries than in cases where there were no head injuries. It was concluded that the risk of head injury increased with reduced headroom. Furthermore, it was observed that when the initial headroom was higher, the incidence of head injury was reduced.
Technical Paper

The New Car Assessment Program - Historical Review and Effect

1994-03-01
941052
This report is a condensed version of the December 1993 New Car Assessment Program (NCAP) report to Congress and provides: an historical review and future goals for NCAP. the results of an 18-month study to assess consumer and media needs in understanding and promoting the use of NCAP data. This included consumer focus groups and media studies. These studies indicated that consumers and the media desire comparative safety information on vehicles, a simplified NCAP format to better understand and utilize the crash test results, and would like to see NCAP expanded to include other crash modes. studies of real-world crashes versus NCAP crash tests. These studies conclude that NCAP test conditions approximate real-world crash conditions covering a major segment of the frontal crash safety problem and that there is a significant correlation between NCAP results and real-world fatality risks for restrained drivers.
Technical Paper

Finite Element Modeling of the Side Impact Dummy (SID)

1993-03-01
930104
A new numerical model of the side impact dummy (SID) was developed based on the DYNA3D finite element code. The model includes all of the material and structural details of SID that influence its performance in crash testing and can be run on an engineering work station in a reasonable time. This paper describes the development of the finite element model and compares model predictions of acceleration and displacements with measurements made in SID calibration experiments. Preliminary parameter studies with the model show the influence of material properties and design on the measurements made with the SID instrument.
Technical Paper

Strategies for Passenger Car Designs to Improve Occupant Protection in Real World Side Crashes

1993-03-01
930482
The National Highway Traffic Safety Administration (NHTSA) upgraded the side impact protection requirement in Federal Motor Vehicle Safety Standard (FMVSS) No. 214 and added dynamic requirements to reduce the likelihood of thoracic injuries in side crashes. As part of the agency's research in developing the requirements of the standard, NHTSA developed a mathematical model for simulation of side impacts. This paper investigates the overall safety performance, based on Thoracic Trauma Index (TTI) as the criteria for passenger cars in real world side crashes, with the aid of the simulation model. A Thoracic Trauma Index Factor (TTIF) is utilized to compare relative safety performance of passenger cars under various conditions of impact. The concept of relating energy dissipation in various side structure and padding countermeasures is used to develop a family of curves that are representative of a design platform.
Technical Paper

Development of an Advanced ATD Thorax System for Improved Injury Assessment in Frontal Crash Environments

1992-11-01
922520
Injuries to the thorax and abdomen comprise a significant percentage of all occupant injuries in motor vehicle accidents. While the percentage of internal chest injuries is reduced for restrained front-seat occupants in frontal crashes, serious skeletal chest injuries and abdominal injuries can still result from interaction with steering wheels and restraint systems. This paper describes the design and performance of prototype components for the chest, abdomen, spine, and shoulders of the Hybrid III dummy that are under development to improve the capability of the Hybrid III frontal crash dummy with regard to restraint-system interaction and injury-sensing capability.
Technical Paper

A Statistical Analysis of Vehicle Rollover Propensity and Vehicle Stability

1992-02-01
920584
This report documents the accident data collection, processing and analysis methodology used by the National Highway Traffic Safety Administration (NHTSA) in a major agency agency investigation of the rollover propensity of light duty vehicles. Specifically, these efforts were initiated in response to two petitions for rulemaking requesting the development of a standard for rollover stability. Logistic regression models were used to investigate the ability of a number of stability measures to predict vehicle rollover propensity, while accounting for a number of driver and environmental factors. It is not the intent of this paper to document formal agency policy in the area of any possible rulemaking efforts, and as such, references to these activities are not discussed. The reader can obtain information on this activity through normal agency procedures.
Technical Paper

NHTSA's Rollover Rulemaking Program - Results of Testing and Analysis

1992-02-01
920581
This paper attempts to define and measure factors related to a vehicle's performance that are influential in the causation of rollover accidents. Data are presented which define the rollover involvement rates for many non-vehicular factors. A brief description of the vehicle metrics and the analysis procedures used in the rollover prevention rulemaking program are included along with a set of conclusions. The program evaluated many vehicle metrics related to vehicle rollover, analyzed accidents from 5 states, and compared the two data bases by testing “cause and effect” hypotheses by performing statistical regressions to determine levels of correlation. Location of the crash, urban vs. rural, was a strong predictor of the crash outcome - that is, rollover or non-rollover. Vehicle class and single vehicle accident rate were also statistically significant, as well as, whether or not the vehicle was equipped with anti-lock brakes. Several other driver demographics were significant.
Technical Paper

Occupant Injury Patterns in Crashes with Airbag Equipped Government Sponsored Cars

1987-11-01
872216
In 1983, the National Highway Traffic Safety Administration (NHTSA) initiated two air hag vehicle fleet programs. The objective was to demonstrate that both original equipment and retrofit air bag systems operate in vehicles as intended. As of July 1, 1987, the two fleets together have accumulated over 200 million miles. Data are presented for 112 crashes involving air bag deployment in these government sponsored fleet vehicles in service between 1984 and July 1, 1987. Of the 112 drivers involved in the crashes, 103 sustained either no injury or only minor (AIS 1)[1]1 injuries. Of the nine remaining cases, six were AIS 2 and three AIS 3. To date, the limited data indicate that the air bag deployed as expected in all frontal crashes severe enough to require occupant restraint beyond that provided by the vehicle interior. Additionally, in collisions in which the air bag did not deploy, the crashes were of such low severity that no actuation was expected and none took place.
Technical Paper

Evaluation of Child Safety Seats Based on Sled Tests

1987-11-01
872210
The injury reducing effectiveness of child safety seats in frontal crashes was evaluated, based on 36 frontal or oblique sled tests run with two or more GM three-year-old dummies in the simulated passenger compartment of a car. Unrestrained, correctly restrained and incorrectly restrained dummies were tested at the range of speeds where most nonminor injuries occur (15-35 mph). Accident data from NHTSA files were used to calibrate a relationship between the front-seat unrestrained dummies' HIC and unrestrained children's risk of serious head injuries; also between torso g's and the risk of serious torso injuries. These relationships were used to predict injury risk for the restrained children as a function of crash speed and to compare it to the risk for unrestrained children. The sled test analysis predicted that the 1984 mix of correctly and incorrectly used safety seats reduced serious injury risk by 40 percent relative to the unrestrained child, in frontal crashes.
Technical Paper

Two New Areas Concerning Side impact Protection for Passenger Car Occupants

1987-05-01
871114
In vehicle crash accidents, approximately 27% to 30% of passenger car occupant casualties are attributed to side impact accidents. The annual death toll in side impacts for passenger car occupants reached 9,000 in 1975 and 1976 and has been between 7,000 and 8,000 in the 1980's. Since 1977, the National Highway Traffic Safety Administration (NHTSA) and many other groups have conducted a significant amount of research on occupant side impact protection with emphasis on thorax injury reduction. Three important problem areas in the side impact are (1) thorax-to-side interior impact, (2) head impacts with A-pillar/roof rail components and (3) occupant ejection through side doors/windows. While the first problem area has been thoroughly studied, the remaining two areas are seldom discussed and less well understood. Therefore, they are relatively new areas to many people.
Technical Paper

The Role of Skull Fractures in Short Duration Head Impacts

1987-02-23
870321
Head injuries are considered a significant safety problem for vehicle occupants involved in vehicle crashes. Although medical literature on the subject is extensive, the emphasis is mainly on the clinical and studies frequently involve data samples that are not representative to the vehicle occupant population. Also, research efforts on head injury have focused on the head rotational acceleration mechanism. The effect of head contact on brain injuries has not been adequately acknowledged and there has been disagreement regarding skull fracture and its relationship to brain injury. The human head, being an extremely complex structure, has many independent injury modes which cannot be described satisfactorily by a single brain injury mechanism. Many individual pathophysiological disturbances to the skull and its contents together comprise head injuries.
Technical Paper

Fatality and injury Reducing Effectiveness of Lap Belts for Back Seat Occupants

1987-02-23
870486
The fatality and injury reducing effectiveness of Tap belts for back seat occupants is estimated by applying the double pair comparison method to 1975-86 Fatal Accident Reporting System and 1982-85 Pennsylvania accident data. Lap belts significantly reduce the risk of fatalities by 17-26 percent, serious injuries by 37 percent, moderate to serious injuries by 33 percent and injuries of any severity by 11 percent, relative to the unrestrained back seat occupant. Lap belts are primarily effective in nonfrontal crashes because the unrestrained back seat occupant is already well protected in frontals. Lap belted occupants have lower head injury risk but higher torso injury risk than unrestrained back seat occupants. This paper presents the views of the author and not necessarily those of the National Highway Traffic Safety Administration (NHTSA).
Technical Paper

Improvements in the Simulation of Unrestrained Passengers in Frontal Crashes Using Vehicle Test Data

1986-02-24
860654
The absence of data on the load deflection and energy absorption characteristics of vehicle interiors has been a factor which limits the accuracy of crash victim simulations. A recent test program conducted for the National Highway Traffic Safety Administration has developed data on the interactions of dashboards and knee panels with chests and knees. This paper summarizes the test results for several vehicles and shows how these results are used in simulating vehicle crash tests. Comparisons between crash tests and computer reconstruction using the 3-Dimensional Crash Victim Simulator (CVS-3D) for a late model car are included. The simulation shows good agreement with test and illustrates the application of available static and dynamic test data to improve occupant simulations.
Technical Paper

A Simple, Practical Method of Assessing Foam Padding Materials for Head Impact Protection

1986-02-24
860199
Since 1960 head impact responses under the action of various forces have been studied analytically. However, the effects of force distribution upon head injury mechanisms have not been studied because measurements of force distribution during head impacts have not been experimentally available. In the past, several methods were tested in order to measure head contact pressure, but the results were not very useful. Since the skull is a composite shell structure, the thin shell theory may be valid for stress analysis. According to the theory, the influence of an external load on a shell element damps out rapidly as the distance between the load and the element increases. Stress concentrations occur in the shell elements directly under the center core area of a localized external load. Therefore, the force on the center core, not the entire force distribution, is critical for the assessment of skull responses.
Technical Paper

Comparison of Pedestrian Kinematics and Injuries in Staged Impact Tests with Cadavers and Mathematical 2D Simulations

1983-02-01
830186
The paper presents a comparison of kinematic responses between the MVMA-2D and the MAC-DAN pedestrian models and pedestrian cadaver kinematics observed in staged car/pedestrian impact tests. The paper also discusses the injuries experienced in the cadaver tests. Seven cadaver specimens in the standing posture were impacted at 25 mph by two different cars: one having a steel bumper and the other having a plastic bumper. The MVMA-2D and MAC-DAN mathematical pedestrian models were employed to simulate pedestrian impacts at 25 mph by a vehicle with a stylized geometry that is similar to the vehicles used in cadaver tests. Comparison of the simulations and the cadaver tests show that both models require further refinement to be able to more accurately simulate the kinematics of the lower legs during impacts with the vehicle bumper.
Technical Paper

Light Vehicle Occupant Protection - Top and Rear Structures and Interiors

1982-02-01
820244
This paper addresses serious, occupant crash injuries from: (a) head impacts with A-pillars, roof headers, and roof side rails, and (b) occupant entrapment and roof intrusion in rollover accidents. It also discusses two less frequent causes of injury: (a) fires in crashes, and (b) occupant ejection through the roof and rear window or rear doors. The paper estimates the relative frequencies of these types of injuries, classified according to the body area injured and the vehicle interior component responsible for the injury. Data for these estimates is from the National Crash Severity Study augmented by the 1979 Fatal Accident Reporting System data. Also, this paper addresses the potential for reducing the severity of these injuries in light motor vehicles, with particular emphasis on AIS 3 and more serious injuries.
Technical Paper

A Search for Priorities in Crash Protection

1982-02-01
820242
This paper presents the methodology and results of an analysis of the available information on motor vehicle safety which could be used to provide a basis for establishing priorities for future Government and private sector efforts directed at enhanced crash protection. The work was stimulated by several factors: (1) 5 years have elapsed since the National Highway Traffic Safety Administration (NHTSA) published a plan for motor vehicle safety research and development, (2) motor vehicles have changed substantially over the past several years, (3) the quantity and quality of accident data and vehicle crash performance information have increased dramatically over the past 5 years, and (4) Government policies and the amount of Government and private sector resources available for future efforts are changing.
Technical Paper

Comparative Studies of Neck Injuries of Car Occupants in Frontal Collisions in the United States and in the Federal Republic of Germany

1981-10-01
811030
Parallel and coordinated accident studies were conducted in the United States and in the Federal Republic of Germany to determine the extent, the level, and the comparability of neck injuries in automotive accidents as reported in the National Crash Severity Study (NCSS), and the Association of German Automobile Insurers (HUK-Verband) files. To determine the comparability of the two data sets, three primary evaluation criteria were used: 1) the distribution of overall injuries by AIS level by various occupant parameters, 2) the risk of occupant AIS injury vs. delta V, and 3) the distribution of neck injuries by AIS for restrained vs unrestrained occupants. Frequencies and severities of neck injuries in car accidents were compared in parallel layouts between the two data sets in frontal, side and rear impact modes. In further breakdown the frontal impact file was separated into driver/passenger and male/female categories.
X